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An approximate  analyt ica l  solution is obtained for the ablat ion of a blunt meta l l i c  body near the stagna- 
tion point. 

The steady ablat ion of a blunt body in the neighborhood of the stagnation point is considered, subject to the follow 
ing assumptions. The influence of the molten f i lm on heat transfer and friction in the boundary layer is neglected,  since 
the flow veloci ty  of the f i lm is very much less than the veloci ty  at the outer edge of the boundary layer .  Thus, the heat 
flux and friction at the outer edge of the f i lm can be taken as being the same as for a f i lm at rest with interface tempera-  
ture To. The molten fi lm is assumed to be an incompressible liquid with constant thermophysical  properties. The pres- 
sure distribution in the f i lm is assumed to be Newtonian. 

It follows from the results of [2] that the flow of the f i lm in the vicini ty of the stagnation point is absolutely steady. 
Under these assumptions, the system of equations describing conservation of fusion is analogous in form to that for a lain 
inar boundary layer in an incompressible gas in the neighborhood of the stagnation point [3]. In the system of coordinates 

coupled with the gas-l iquid interface and moving within the body at the breakdown rate w, the equations are: 

(ux)~ + (vx)y = O, 

uu~ + vu v = ~2 x + ~. uy v, (1) 

uT~ + vTy = x2 Tuu. 

The symbols for veloci ty  components and thermophysical  parameters are the conventional ones. g2z = -(P2x) -1 Px is the 
veloci ty  gradient in the f i lm.  

The boundary conditions are as follows: 

y = O, v = ' 0 ,  ~ u u = "ho = A~ x,  "~ T u = qlo = a ( T  l - -  To) ,  y = - -  ;, 

u = 0 ,  T = T f  . (2) 

The values of the proportionali ty factor A r ,  in the expression for friction in the boundary layer, and the heat trans 
fer coefficient  a are known: 

dtt l 
A t = 0.763 Pr~ h Vip~ ~ [~)z ' ~1 - -  ~ [ - -  (~)l X) - I  Px] '/ ' ,  (3) 

a = 0.763 PrT'/'Cp ( poF0 ) o . , ] f ~ , .  (4) 

The temperature  distribution in the body for a given heat flux, and the tempera ture  at the uniformly moving 

boundary were examined in [4], where the relationship between breakdown rate and heat f lux q supplied to the body was 
obtained,  For constant thermophysical  parameters this takes the form: 

q : )'~ Tu (--  ~) = 93 wO0, (5) 

where Q0 = Qf + C~(Tf - T-~o) is the heat  required per unit mass to heat  to the fusion temperature  and liquefy. To the 
above boundary condit ion is added the law of conservation of mass on passing through the fusion front. 

P2 v ( - -  ~) = P3 w. 

Thus, the problem reduces merely  to that of solving a system of equations for fusion, 

Reduction of the in i t ia l  system of equations to ordinary differential  equations: 

We seek a solution in the form 

u = ~,2x T' (z), v = - -  2 ] / ' ~ ' ~ I  (z), T = T f  O ( z ) , z  = l/~3--~2 Y .  
1 /  ~2 

(6) 

(~) 
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Substituting (7) in (1) and boundary conditions (2), (5), (6), we arrive at the following boundary value problem: 

where 

z = O ,  f = o ,  f-=l , ,  

( ~l'/:~_~a, f,=o, 
v2 ] 

f'= q-- 2ff" = f "  -t- 1. (8) 

0"-t- 2Pr2 f 0 ' =  O. (9) 

0o (. T A2 ~ (fJl ~ 0o), (10) 

o _- 1, o; -- - -  2pP.V' T71 Qof (a), (11) 

~/~. ~/: 
0 z = T t / T  f ,  0 o = T ( O ) / T f ,  b = . ' % v 2  /P2P2 �9 (12) 

The nonlinear boundary problem (8)-(11) contains two unknowns 00 and a. Eliminating 00 from the boundary con- 
ditions, from the last relat ion in (11) we obtain the relationship needed to determine the unknown fi lm thickness, which 
completes the problem. Integrating the energy equation, we have 

z 
0'= O;exp (-- 2Pr2 J" fdt) 0 

and 0 ==- 1 q- 00 [J (z) -- J (a)] ,  

z t 

where J ( z ) =  S e x p  ( - - 2 P r 2  j ' fdk)dr. 
0 0 

The f i lm surface temperature  and the heat flux are determined from the formulas 

(13) 

(14) 

(15) 

Oo = t - - O o J ( a ) ,  (16)  

(~2 2 ) [ (~-~) 1/2 1-1 O0 = a 1/2(0 l - -  1) k 2 - - ~  J(a) . (17) 

using (13), and taking into account (17) from boundary condit ion (11) for 0 a, we find the condition which closes 
the problem 

-- 2(~v~)'l, p2Qof(a ) = [ a T  f (0 z - -  1)] k~ [k  2 - -  ~ ( , , d~32)v-  ~ X 
(18) 

X J ( a ) ] - l e x p (  2Pr~;fdz)  . 
0 

The first term on the right in (18) is the thermal  flux to the surface at the fusion temperature ,  while the second 
and third terms reflect  the reduction of heat flux due to superheating of the f i lm and to heat  being carried away by the 
f i lm.  Thus, the problem reduces to integrat ion of (8) with three boundary conditions and the supplementary condit ion 
(18) to determine the unknown pararaeter  a. 

Calcula t ion of abla t ion parameters.." 

The boundary problem (8), (10), (11), (18) has an approximate  ana ly t ica l  solution in the form of the principal  

part of a Taylor  series for function f in the region z = 0. This follows from the smallness of parameter  a (a ~ 1) corre- 

sponding to the dimensionless thickness of the f i lm.  

To find the expansion of function f in series, a knowledge of f'(0) = k(a) is necessary. This may be determined 

by writing the expansion of f '(z) in the neighborhood of zero, and expressing the higher derivatives in terms of k(a) from 

(8). Then, satisfying the boundary condit ion for z = a, we arrive at the equation 

k 2 - -  1 k (k 2 - -  1) 
k q - b a q - - - a  ~ - -  a ~ q - . . . = O .  (19) 

2 12 

As the roots of (19) are stil l  not convenient for investigation,  let us assume that the roots of the equation of order 
n+l  differ only sl ightly from the roots of the equation of order n, in view of the rapidly diminishing terms of the expan-  

sion of f ' (z) .  The positive root must be chosen, since f '(z) ~ @u/Oy > 0. The expansion for f takes the form 

---b z ~ §  k ~ - - I  P k ( k 2 - - 1 )  P + . . .  (2o) 
f = k z +  2 6 60 
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Solving the simuItaneous system of algebraic equations (19) and (20), and using (18), a, k(a) and f(a) ~ w may be de -  
termined by successive approximations.  The temperature profile is found from (16) and (17). 

It should be noted that the value of f(a) obtained from (20) differs from the results of numerical  integration of the 
boundary problem (8), (10), (11), and (18), when a = 2, by an amount less than 1% of f(a). This again confirms that 
the solution in the form of (20) gives a good approximation to the exact solution of the problem. For small  ?r~ numbers 
(fused metals),  determinat ion of breakdown parameters is greatly s implif ied.  

The rate of fusion w is found from (18) to an accuracy of 3-5% independent of the remaining breakdown parame-  
ters, since superheating of the fusion zone and the carrying away of heat by the f i lm are negligible,  because of the low 
viscosity and high thermal  conductivi ty.  

w = a ( T  l - -  T f )/p~ Qo. 

For small  Pr 2, the function J(z) ~ z, and the temperature profile in the fusion zone is nearly l inear 

( 2 1 )  

T ~ Tf  -F ak71 (v2/~2),/, (T t - - T f  ) ( z -  a). (22) 

The f i lm thickness is easily determined from (19) and (20), since the value of f(a) is'known with great accuracy,  

The dependence of the ablat ion rate on the M number can be approximated with high accuracy by the formula 

w = C M .  I / P .  (23) 

The constant C depends o n  the properties of the mater ia l ,  the flowing medium, and the body geometry.  The ex-  

ponent n depends only sl ightly on the nature of the gas. For air, n =  3.3.  

Because of the above-ment ioned  fusion properties of liquid metals,  the rate of ablat ion on the lateral  surface of 
the body, where laminar  flow in the boundary layer and stabil i ty of the f i lm are maintained,  is given by 

W = Werq (x) /qcr  (24) 

The s tabi l i ty  parameter  of the f i lm is the quantity Re 0 = $2KxZ/u2, which, according to the results of [2], must 
not exceed 150. An expression for the heat  flux to the la tera l  surface of the body was obtained in [5]. 

Ablat ion of a body decelera t ing in flight at constant aRitude:  

It is known that if a body of high thermal  conductivity is placed in a stream of hot gas, the surface temperature  
reaches the value Tf in a t ime  of the order of 10 -s to 10 -2 sec, and thus the rate of ablat ion becomes steady pract ica l ly  
instantaneously.  Hence it follows that a quasi-stat ionary study of the problem can be used to ca lcula te  ablat ion under 
changing external  conditions.  

Let us examine  the following problem. A body undergoing abla t ion in flight due to resistance of the medium de-  
celerates  in a distance L from veloci ty  v 0 to ve loc i ty  v L. It is required to determine the ablat ion A Assuming quasi 2 

stationary ablat ion,  we have 

t L M L 

J S A--_ ' w ( t )  d t =  w ( M )  dt dM. (2,5) 
dM 

to Mo 

The derivat ive dt /dM may be found from the equation of motion of the body, which, for a quadratic drag law, takes 

the form 
dv CxF 91 z 

- -  = - -  By 2, B = p , 

dt 2m 

By virtue of the  assumption of quasi-s tat ionary ablat ion,  we can use (23) for w(M). 

using (26), we have 

Ba* (n--1) 1-- NTo ) 1' = N 

( 2 6 )  

Substituting (23) in (25) and 

(2'7) 

Formula (27) was obtained on the assumption C x = const, but the decrease in mass is smal l  compared to the in i -  

t i a l  mass. The value of M L is found from (26) 

ML ---- Mo exp (-- BL). (28) 
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It is interesting to investigate how the ablation depends on the pressure for given body mass and shape, flight distance L, 
and properties of the medium. It is evident that the dependence is not monotonic, since increase of pressure leads, on 
the one hand, to an increase in heat  flux, and, on the other, to an increase in drag. The value of the pressure p., for 
which ablation of the body attains a maximum value, may be necessary for the conduct of laboratory experiments. 

Examining (27) for an extremum, we find, for the value p., the formula 

p .  = 2 ,512m/C .F  p, (n - 1) L, (29) 

from which it is easy to see the dependence of ~. on the parameters of the problem. Formula (29) does not include the 
dependence on M 0, since it was assumed above that the exponent n in (23) and the drag coefficient did not depend on the 

M number. 

If the body breaks down with vaporization and chemical  reactions, the dependence of the breakdown rate on pres- 

sure will be more complex. However, the method described may be used for a rough estimate of p.. 

NOTATION 

C x - drag coefficient, slightly dependent on M for M > 2 [611 F - frontal area of model = 2~rR2; 01 - density of 
medium at pressure of 9.8 �9 104 newton/m2; m - mass of model; ~ = p /9 .8  . 104 newton/m 2 - dimensionless pressure. 
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